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Abstract

A robust computer vision-based approach is developed to estimate the load asymmetry angle 

defined in the revised NIOSH lifting equation (RNLE). The angle of asymmetry enables the 

computation of a recommended weight limit for repetitive lifting operations in a workplace to 

prevent lower back injuries. An open-source package OpenPose is applied to estimate the 2D 

locations of skeletal joints of the worker from two synchronous videos. Combining these joint 

location estimates, a computer vision correspondence and depth estimation method is developed 

to estimate the 3D coordinates of skeletal joints during lifting. The angle of asymmetry is then 

deduced from a subset of these 3D positions. Error analysis reveals unreliable angle estimates 

due to occlusions of upper limbs. A robust angle estimation method that mitigates this challenge 

is developed. We propose a method to flag unreliable angle estimates based on the average 

confidence level of 2D joint estimates provided by OpenPose. An optimal threshold is derived 

that balances the percentage variance reduction of the estimation error and the percentage of angle 

estimates flagged. Tested with 360 lifting instances in a NIOSH-provided dataset, the standard 

deviation of angle estimation error is reduced from 10.13° to 4.99°. To realize this error variance 

reduction, 34% of estimated angles are flagged and require further validation.
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I. INTRODUCTION

Overexertion during manual lifting is a leading cause of lower back pain and related health 

issues that cost the industry billions of dollars annually [1]. To protect workers from 

overexertion, the National Institute for Occupational Safety and Health (NIOSH) developed 

the revised NIOSH lifting equation (RNLE) [2] It has become the most widely used tool to 

assess the risk of lower back pain associated with lifting and lowering tasks in the workplace 

[3].

The RNLE computes the recommended weight lifted (RWL) and the lifting index (LI) as 

the ratio of the load weight (L) and the RWL[2]. The RWL is derived from measurements 

dependent on the worker’s body postures and movements during lifting. Direct-reading 

methods of these spatial and temporal factors include wearable motion sensors such as 

inertia motion units (IMU) and visible markers ([4], [5], [6], [7]). However, these methods 
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are intrusive to the normal work routines, often difficult to synchronize signals in the context 

of work activities, and observation duration is limited by battery life [8].

Video monitoring is a non-intrusive approach to acquire the measurements for the RNLE 

[9], [10], [11], [12] Early methods are based on manual scoring from the videos [9]; or 

fitting the video data into a biomechanical human body model [10], [11], [12]. Mehrizi, et 

al [10] reported computer vision algorithms to estimate 3D posture for symmetrical lifting 

tasks. In [11], a deep neural network is developed to predict lower back joint load and 

the risk estimate for low back disorders. In these works, cameras are carefully calibrated, 

and models are trained using acquired experiment data to develop the classifier [10] or the 

in-house 3D joint location estimation algorithm [11], [12].

In this study, we present a robust computer vision workflow to estimate the asymmetry angle 

of asymmetric manual lifting. Specifically, the proposed system is tasked to process two 

video clips taken synchronously by two video cameras of a manual lifting operation. For 

each video, it detects a keyframe when the lifting operation starts. Then, it applies an open-

source human pose estimation software package OpenPose [14] to extract 2D coordinates of 

skeletal joints of the subject performing the lifting operation. Next, a procedure called the 

structure from motion is applied to estimate the relative camera pose. Manual marking of 

a set of corresponding corner feature points is used to improve accuracy. After estimation 

of the camera poses, 3D coordinates of skeletal joints are estimated using triangulation. 

Finally, a robust estimation formula is proposed to estimate the angle of asymmetry using 

the estimated 3D coordinates of skeletal joints. We also leveraged the confidence score 

of estimated 2D coordinates of skeletal joints provided by OpenPose to predict the angle 

estimation error. We tested this workflow on a dataset acquired by NIOSH for a different 

purpose [13]. This dataset consists of 360 lifting operations. The mean value of angle 

estimation error was −0.48° with a standard deviation of 10.14°. If one excludes those angle 

estimates with a confidence score below 0.5, the mean angle estimation error became −1.12° 

with a standard deviation of 4.99°.

This approach exhibits several unique features: (a) It leverages an open-source software 

package to estimate 2D image coordinates of body skeletal joints for each camera. No 

re-training using the experiment data in this work was performed. (b) Cameras poses in 

the experiment are not available. A structure for motion procedure and manually selected 

matching feature points are used to estimate camera poses. (c) A robust angle estimation 

procedure using the estimated 3D coordinates of skeletal joints was proposed. The empirical 

relation between angle estimation error and the confidence score of 2D skeletal joint 

estimates was leveraged to predict unreliable angle estimates. By rejecting these outliers, 

the overall angle estimation accuracy is significantly improved.

An important technical innovation of this work is the development of an end-to-end 

workflow that incorporates generic computer vision software modules such as the OpenPose 

to provide a robust estimation of the angle of asymmetry. Existing approaches [10], [11], 

[12] developed customized computer vision algorithms and software that are hard to adapt to 

varying practical scenarios. In this work, we demonstrated the promises of applying generic 

pose estimation modules for monitoring manual lifting operations. As numerous pose 
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estimation algorithms being developed in the computer vision community, our approach can 

leverage state-of-the-art pose estimation modules to deliver robust and accurate estimates 

of 2D and 3D coordinates of skeletal joints. As such, ergonomic researchers may focus on 

inferring lifting equation parameters from these estimated poses for real-time monitoring. 

This is different from traditional approaches that focus on developing customized pose-

estimation packages using data gathered from laboratory experiments. Note that the generic 

pose estimation modules may be re-trained using ground truth labels to further enhance 

their performance for the specific dataset. This retraining step will customize a generic 

pose estimation package for a specific application scenario. Different retraining for different 

datasets will need to be performed when the system is to be applied to a different work 

environment.

A potential challenge of applying a generic pose estimation module is the need to 

assess potential estimation error. In this work, we analyzed causes that contribute to 

excessive angle estimation error and leverage a confidence score assessed by the generic 

pose estimation package to infer the angle estimation error. Our efforts showed that an 

exploratory investigation of estimation error is an integral part of the proposed workflow to 

enhance the reliability of the outcome.

In the rest of this paper, the definition of load asymmetry angle and the computer vision-

based pose estimation method are discussed in section II. The dataset used for the estimation 

method is described in section III. Results and discussion are reported together in section IV, 

followed by the conclusion and future works in section V.

II. BACKGROUNDS AND RELATED WORKS

A. Load Asymmetry Angle

In the RNLS, the RWL is expressed as the product of a load constant (nominal weights, 

about 23 Kg) and six multipliers, including horizontal, vertical, distance, angle, frequency, 

and coupling multipliers [15]. Among them, the angle multiplier AM is defined as

AM = 1 − 0.0032A 0 ≤ A ≤ 135. (1)

where A is the load asymmetry angle in a unit of degrees. As shown in Fig. 1, the angle of 

asymmetry is defined as the angle between the asymmetry line and the mid-sagittal line [15].

From eq. (1), an increment of 15° in the value of A reduces RWL by 1.1 Kg. Although the 

required accuracy of A is not specified in [15], we may use eq. (1) to assess whether the 

angle estimation error is acceptable in practice.

From Fig. 1, the asymmetry angle may be estimated given the 3D coordinates of the 

worker’s hands and ankles. In [16], body asymmetry is characterized using five angles 

during a lifting task. These angles are defined on horizontal vectors along the directions of 

the grips, shoulders, pelvis, and feet. Hence measurements of 3D coordinates of these body 

skeletal joints are required. Dempsey and Fathallah [17] discussed the distinction between 

load asymmetry and trunk asymmetry.
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B. Video-Based Posture Estimation

Previously, we developed a video-processing algorithm [18] to estimate RNLE parameters 

including the lifting frequency and the hand location for lifting the object. In this algorithm, 

we use motion segmentation to track the worker’s movement. When a lifting operation 

begins, the object being lifted will change from stationary to moving, leaving a ghost 

shadow of the object after subtracting the stationary background. By detecting the presence 

of this ghost shadow (ghosting effect), the frame index when the lifting starts can be 

determined. This method will be employed in this work to detect the onset of a lifting 

instance.

C. Deep Neural Network Trained Human Pose Estimation

Several deep neural networks trained human pose estimation algorithms have been 

developed recently and made available as open-source software packages [13], [19]. Among 

them, OpenPose [14] has been known to give accurate results and is widely adopted in 

activity recognition, and gait analysis applications. OpenPose uses Part Affinity Fields 

(PAFs) as a non-parametric representation of body parts and delivers 2D coordinates of 25 

key points including major skeletal joints. We use OpenPose in this work because it can 

process the videos of our dataset without any customization.

III. METHOD

A. 2D Skeletal Joint Coordinate Estimation

The dataset used in this work consists of two synchronous video clips taken from two video 

cameras from the opposing sides of a subject performing a lift operation. In each trial, the 

subject walks toward a shelf, pickups the object from the shelf, turns around, and walks to 

the destination to drop off the object. One camera is stationary capturing the entire cycle of 

the lifting operation. The other camera was panned horizontally by an operator to track the 

movement of the subject. No camera intrinsic parameters (e.g. focal lengths) and extrinsic 

parameters (e.g. poses, and positions) are available.

Using a lifting instance detection algorithm [18] developed in our lab, we detect the key 

video frames from each video clip when the subject moves the object and ready to turn, yet 

still having both feet on the floor. For each key video frame, OpenPose will estimate the 2D 

image coordinates (in # of pixels) of 25 skeletal joints of the subject.

B. Estimating 3D Coordinates of Skeletal Joints

Given the 2D skeletal joint coordinates estimated using OpenPose from the respective key 

video frames, our next goal is to estimate the 3D coordinates of these skeletal joints. Since 

the camera poses are not available, our approach is to first calibrate the cameras using a 

structure from motion (SfM) (from two views) procedure [20], [21]. Then, we estimate the 

3D coordinates of skeletal joints from the corresponding 2D coordinates of both views using 

triangulation [20].
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SfM is a computer vision technique that simultaneously estimates camera poses and the 

3D coordinates of a set of corresponding feature points extracted from two or more views 

(cameras) of the same scene. It consists of the following steps:

a. Extract a set of visually distinct feature points from both keyframes.

b. Establish correspondence matching of feature points between the keyframes.

c. Using the epipolar constraint to estimate the fundamental matrix F.

d. Estimate (relative) camera pose (R, t) from the matrix F where R is a 3D rotation 

matrix and t is the linear translation of camera centers.

e. Estimate 3D coordinates of the matching feature points.

In this work, in step a), we applied the SURF feature detector to estimate the set 

of feature points. In step b), we manually selected a set of matching corner feature 

points corresponding to static objects visible from both keyframes. Steps c) and d) are 

realized using Matlab computer vision toolbox functions estimateFundamentalMatrix and 

cameraPose. The translation vector t is a uni-vector whose magnitude cannot be estimated 

using only two views. We did not perform step e) because manually picked feature points in 

step b) are not the desired skeletal joints. Instead, we apply triangulation (Matlab command 

triangulate) to the 2D coordinates of skeletal joints using the estimated camera pose and 

deduce corresponding 3D coordinates relative to the reference camera. These 3D coordinates 

are subject to the same yet unknown scaling factor since we only have two views. In section 

III.C, we shall explain that this unknown scaling factor does not affect the estimation of the 

angle of asymmetry as it depends on the relative orientation between pairs of skeletal joints 

rather than their absolution 3D coordinates.

The decision of applying the OpenPose package to elicit 2D coordinates of skeletal joints 

from each view without retraining directly impacts the method described above. Specifically, 

the accuracy of these 2D coordinates of skeletal joints may not be sufficiently accurate to be 

used in SfM (step b) for estimating the camera poses.

C. Robust Load Asymmetry Angle Estimation

Given the 3D coordinates of wrists and hip joints, we may proceed to estimate the 

asymmetry line defined in Fig. 1. The projection on the floor of a unit vector along the 

direction between left and right wrists is perpendicular to the symmetry line. Similarly, the 

projection on the floor of a unit vector between the two hip joints is perpendicular to the 

sagittal line. The angle difference between these two-unit vectors thus is the load asymmetry 

angle [15].

Let PLW, PRW, PLH, and PRH be the horizontal (x and y) components of the estimated 3D 

coordinates of the left-, right- side wrists and the left-, right- hip joints of the worker during 

lifting. One may compute a wrist direction vector as:

v = v1 v2
T = PRW − PLW . (3)
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Then the wrist angle θW = tan−1 (v2/v1). Similarly, one may compute the hip direction angle 

θH. Finally, the asymmetry angle A may be estimated as:

A = θW − θH . (4)

Note that the v vector is dependent only on the relative horizontal world coordinates (x 
and y) of the related skeletal joints. Therefore, there is no need to perform training to 

align the 3D coordinates estimated in this section with those provided by the ground truth 

motion capture device. Moreover, it is invariant to scaling the 3D coordinates of the skeletal 

joints. Hence the coordinates estimated in sub-section III.B above may be used without 

modification.

Recall that dtanθ/dθ = 1 + tan2θ, we have (for θW or θH)

dθ = dtanθ
1 + tan2θ

=
v1dv2 − v2dv1 /v1

2

1 + v2/v1 2 = cosθ −sinθ ⋅ dv
v

Hence

dθ ≤ dv / v (5)

Eq. (5) says the angle estimation error will be smaller than that of the relative skeletal joint 

coordinate estimation error. When the two estimated skeletal joints are wide apart (larger 

value of ||v||), the relative joint estimation error will be smaller. Since eq. (5) applies to both 

θW and θH in eq. (4), the estimation of asymmetry angle A is robust against the coordinate 

estimation errors of the skeletal joints dv. |

IV. LABORATORY EXPERIMENT AND DATA SET [13]

A. Experiment Setup

The experiment data was adapted from a study conducted by NIOSH [13] previously. In 

this study, human body postures in different symmetrical lifting tasks were recorded. 12 

different originating lifting hand locations are used according to the American Conference of 

Governmental Industrial Hygienists Threshold Limit Values (TLVs) for lifting [22].

For each of the 12 initial hand locations, a subject repeats a lifting task three times. Learning 

effects were mitigated by instructing the subjects to perform random ordered trials. The 

subject will walk from a starting point toward the lifting station, lift the object with both 

hands, and turn-around walk back to the drop-off station near the starting point. A wire 

basket was used as the lifting object. The wire texture would reduce (to some extent) the 

visual obstruction reduction of the hands holding the object. The basket was set on a 12 × 

12 cm platform to facilitate the subjects to perform lifting tasks naturally. The height of the 

platform was adjusted according to the designated 12 initial and locations during lifting.
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A MoCap system OptiTrack (Model Flex 13, Innovative Sports, Inc., Chicago, USA) is used 

to track marker clusters attached to 13 positions on the body of the subject. This MoCap 

system claims an average accuracy of 0.7 mm in the 3D coordinate system when calibrated.

Two cameras were used to record the video data. Both cameras were mounted on tripods 

and were synchronized with the MoCap system. One camera was a web camera (Microsoft 

1080p LifeCam, 640 × 480 pixels, 30 fps). It is placed 4 meters away from the starting point, 

at eye-level height, with a fixed viewing angle perpendicular to the subject’s walking path. 

The other camera was a camcorder (Sony, 1280 × 720 pixels, 30 fps). The second camera is 

located across the walking path of the subject and is controlled by a staff (seen in Fig. 2(b)) 

to pan horizontally following the subject walking to and back from the lifting station. An 

example of corresponding views of the two cameras is shown in Figures 2(a) and 2(b).

Since the two cameras have different resolutions, we scale video frames of the first camera 

(1280 × 720) so that the same subject has about the same height (in units of pixels) as that 

in the second camera. This ad hoc scaling operation helps improve the accuracy of skeletal 

joints’ 3D coordinate estimations. All subsequent processing steps (including individual 

camera calibration) were performed after the video frames of the first camera were scaled.

Each camera is initially calibrated by capturing a short clip of a calibration checkerboard. 

MATLAB camera calibration app is applied to obtain intrinsic parameters, including focal 

length, of each camera. The camera poses, however, are not available since the video clips of 

the checkerboard were taken before the experimentation at different camera poses.

B. Subjects

Ten subjects were recruited. These subjects were employees in the division of the Applied 

Research and Technology office of NIOSH in Cincinnati, Ohio. Inclusion criteria and 

exclusion criteria were applied to screen the subjects. Written consents were obtained 

according to the NIOSH-approved IRB study protocol.

C. Experiment Protocol

The path the subject is directed to follow during each lifting trial is marked on the floor, 

with the initial position, the lifting location, and the finishing line identified. The subject is 

instructed to line up toes to each of these lines when performing such tasks. The subject will 

walk from the initial position toward the lifting station following the line and will lift the 

basket in the front with both hands. Then the subject will turn around, carrying the basket to 

a shelf to release the object, and walk to the finishing line. The subjects will perform these 

steps at their own pace and turning at their preference. The distance between these specific 

locations is not more than 20-step. An experiment will not be recorded until the subject 

became familiarized with the required steps. Each trial lasted about 15 seconds.

The frame number of the beginning of lifting (BOL) for the ground truth data was 

established manually by two researchers independently. BOL is defined as the instant when 

the basket started to move. The ground truth (MoCap) asymmetry angles then are estimated 

by feeding corresponding MoCap-annotated 3D skeletal joint positions into equations (3) 

and (4).
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V. RESULTS, ERROR ANALYSIS

We apply the estimated angle of asymmetry of the 360 lifting instances in the NIOSH 

dataset and compared it to the computed ground-truth values. The error distribution is shown 

in Fig. 3.

After reviewing the corresponding videos and the 2D pose estimates, it is found that those 

large errors of estimated angles are often due to self-occlusion. Since the cameras are placed 

to face the sagittal plane of the tester, only one side of the body is exposed to a camera. 

As shown in Fig. 4, each camera may view only one side of the tester. When a body part 

is not found in the view, OpenPose reports a predicted 2D position of the joint and enters a 

confidence score of 0. Using these predicted 2D joint positions to estimate corresponding 3D 

coordinates is likely to cause large errors of the estimated asymmetry angles.

Out of the 360 lifting instances in the dataset, the number of instances that some of the joints 

are occluded and not detected by OpenPose are listed in table 1. Note that the wrist joint is 

prone to occlusion. When this happens, we opted to use the elbow joints (of both hands) to 

estimate the vector v in eq. (3). If an elbow is also occluded, the fallback choice is to use the 

shoulder joints.

We also hypothesize that the weighted averaged confidence scores of the 2D joint position 

estimates may be correlated to the angle estimation error. In Fig. 5, a scatter plot of absolute 

values of angle estimation error versus the weighted averaged confidence score of all 2D 

joint location estimates is provided. Note that when the weighted averaged confidence 

score is below 0.5, the angle estimation error increases dramatically. Therefore, one may 

decide that if the weighted averaged confidence score is smaller than 0.5, the corresponding 

asymmetry angle estimate may be deemed unreliable, meaning potentially the error may be 

large. When this algorithm is deployed in the warehouse to monitor the lifting operations, 

unreliable angle estimates may be flagged to be reviewed manually. Note that the angle 

estimation errors due to self-occlusion are relatively less accurate. If these angle estimates 

deemed to be unreliable are excluded, the resulting error distribution is shown in Fig. 6. 

Note STD is reduced from 10.14° to 4.99°.

We search the range between 0.1 to 0.8 of the averaged confidence score and find 0.5 yields 

the optimal solution. This optimization process is summarized in Fig. 7.

VI. CONCLUSIONS

In this research, an algorithm to estimate the load asymmetry angle for the RNLE was 

developed. This algorithm does not require customized training using local datasets and 

provides an assessment of the estimated angle is reliable or not. We identify that self-

occlusion is the main source of estimation errors. It may be mitigated with additional 

cameras properly placed to avoid blind spots of viewing. Future work will focus on general-

purpose training robust learning-based 3D pose estimation algorithms to provide accurate 

3D coordinates of body poses in a harsh work environment and integration of estimating 

other RNLE parameters in one estimation process.
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Figure 1. 
Graphic Representation of Asymmetry angle [15]

Wang et al. Page 11

IEEE Trans Hum Mach Syst. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2(a). 
Sony camera view [Photo credit: CDC/NIOSH].
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Fig. 2(b). 
Life camera view [Photo credit: CDC/NIOSH].
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Fig. 3. 
Distribution of angle estimation errors (mean = 0.48°, Std = 0.14°)
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Fig.4. 
OpenPose [14] 2D skeleton joints estimation for the same scene but captured from two 

views (a) left arm is visible, (b) right arm is visible [Photo credit: CDC/NIOSH].
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Fig. 5. 
Absolute values of angle estimation error as a function of averaged confidence scores of 2D 

joint estimates
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Fig. 6. 
Distribution of angle estimation errors after excluding unreliable estimates (mean = −1.12°, 

Std = 4.99°)
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Fig. 7. 
Choosing optimal threshold value of averaged confidence score to minimize overall cost.
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Table 1.

% Instances the joint is not detected by OpenPose

Wrist missing Elbow missing

Right side 16.94% 4.72%

Left side 28.61% 15.56%
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